lunes, 20 de mayo de 2019

Casos De Factorizacion

Caso I

 - Factor común


  •  a · · · (c)  
 si y solo si el polinomio es 0 y el cuatrinomio nos da x.

Factor común por polinomio igual:

Lo primero que se debe hacer colocar la base o el polinomio:

Se aprecia que se repite el polinomio (x-y), entonces ese será el factor común. El otro factor será símplemente lo que queda del polinomio original, es decir:
La respuesta es:
En algunos casos se debe utilizar el número 1, por ejemplo:
Se puede utilizar como:
Entonces la respuesta es:

Caso II

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta dos características, términos repetidos como variables y números sin factor común, se identifica ya que tiene un número par de términos.

Caso III

Artículo principal: Trinomio cuadrado perfecto.
Si se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un trinomio cuadrado perfecto debemos reordenar los términos dejando el primero y de tercero los términos que tengan raíz cuadrada, o también podemos organizarlos ascendente o descendente (tanto el primero como el tercer termino deben ser positivos); luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término; al cerrar el paréntesis elevamos todo el binomio al cuadrado.

Ejemplo 1:
Ejemplo 2:
Ejemplo 3:
Ejemplo 4:
Organizando los términos tenemos:
Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:
Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

 Caso IV - Diferencia de cuadrados perfectos

Se identifica por tener dos términos elevados al cuadrado, unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b),(a+b), uno negativo y otro positivo).
O en una forma más general para exponentes pares:
Y utilizando una productoria podemos definir una factorización para cualquier exponente, el resultado nos da r+1 factores.
Ejemplo 1:
Ejemplo 2:
Supongamos cualquier r, r=2 para este ejemplo.
La factorización de la diferencia o resta de cuadrados consiste en obtener la raíz cuadrada de cada término y representar estas como el producto de binomios conjugados.

Caso V

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante una suma para que sea el doble producto de las dos raíces (es decir, para completar el Trinomio Cuadrado Perfecto T.C.P.), el valor que se suma es el mismo que se resta para que el ejercicio original no cambie.
Nótese que los paréntesis en "(xy-xy)" están a modo de aclaración visual.

Caso VI - Trinomio de la forma x2 + bx + c o trinomio simple perfecto

Se identifica por tener tres términos, hay un literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio..
Ejemplo:
Ejemplo:

Caso VII - Trinomio de las formas ax+ bx + c o trinomio compuesto

En este caso se tienen 3 términos: el primer término tiene un coeficiente distinto de uno, la letra del segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, o sea, sin una parte literal, así:
Para factorizar una expresión de esta forma, se multiplica la expresión por el coeficiente del primer término
Luego debemos encontrar dos números que multiplicados entre sí den como resultado el término independiente y que su suma sea igual al coeficiente del término x :
Después procedemos a colocar de forma completa el término x2 sin ser elevado al cuadrado en paréntesis, además colocamos los 2 términos descubiertos anteriormente :
Para terminar dividimos estos términos por el coeficiente del término x2 :
 :
Queda así terminada la factorización :
 

Caso VIII - Suma o diferencia de potencias impares iguales

La suma de dos números a la potencia n, an +bn se descompone en dos factores (siempre que n sea un número impar):
Quedando de la siguiente manera:
Ejemplo:
La diferencia también es factorizable y en este caso no importa si n es par o impar. Quedando de la siguiente manera: Ejemplo:
Las diferencias, ya sea de cuadrados o de cubos salen de un caso particular de esta generalización.

Caso IX - Suma o diferencia de cubos perfectos

Su proceso consiste en los siguientes pasos: Suma o diferencia de cubos: a³ ± b³

Suma de cubos

a³ + b³ = (a + b) (a² - ab + b²)
Se resuelve de la siguiente manera
El binomio de la suma de las raíces cúbicas de ambos términos (a + b)
El cuadrado del primer término, [ a² ]
[ - ] el producto de los 2 términos [ ab ]
[ + ] El cuadrado del segundo término; [ b² ]
Ejemplos:

Diferencia de cubos

a³ - b³ = (a - b) (a² + ab + b²)
Se resuelve de la siguiente manera
El binomio de la resta de las raíces cubicas de ambos términos (a - b)
El cuadrado del 1er termino, [ a² ]
[ + ] el producto de los 2 términos [ ab ]
[ + ] el cuadrado del 2º término; [ b² ]

Definición De Derivada


Definición De Derivada;

En matemáticas, la derivada de una función, es la razón de cambio instantánea con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una función en un punto dado.
Entonces el valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es, a su vez, la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21.



1 Definición de derivada

La derivada es uno de los conceptos más importante en matemáticas. La derivada es el resultado de un límite y representa la pendiente de la recta tangente a la gráfica de la función en un punto. Pero vayamos por partes.

La definición de derivada es la siguiente:
Podría, pues, no existir tal límite y ser la función no derivable en ese punto. En esta primera práctica vamos a ver qué significa cada uno de los términos que aparecen en la formula anterior. 
2 Derivada de la parábola


Secantes y tangentes Supongamos que queremos hallar la tangente a una curva de ecuación cartesiana y D f .x/ en el punto .a; f .a//. En principio, parece que nos falta un dato ya que una recta no queda determinada por un solo punto. Para determinar una recta necesitamos dos puntos o un punto y la pendiente. La estrategia consiste en aproximar la tangente por rectas secantes cuyas pendientes sí pueden calcularse directamente.
Resultado de imagen para derivada de la parabola
3 Función derivada de la cúbica.


Una función cúbica (o función de tercer grado) es una función polinómica de grado 3, es decir, que el mayor exponente del polinomio es x elevado a 3 (x3):
Expresión de una función cúbica.
La representación gráfica de la función cúbica es:
Dibujo de una función polinómica cúbica.


Una función cúbica puede tener tres, dos o una raíz. Las raíces de una función son los elementos del dominio tal que su imagen es nula (f(x) = 0).


Función primera derivada y segunda derivada.


El Criterio de la segunda derivada es un teorema o método de cálculo matemático en el que se utiliza la segunda derivada para efectuar una prueba correspondiente a los máximos y mínimos relativos de una función.
Se basa en el hecho de que si la gráfica de una función  es convexa en un intervalo abierto que contiene a , y  debe ser un mínimo relativo a . De manera similar, si la gráfica de una función es cóncava en un intervalo abierto que contiene a  y  debe ser un máximo relativo de .
Sea  una función derivable dos veces en un entorno abierto que contiene a  tal que  con la siguiente segunda derivada:


  1. Si , entonces  tiene un máximo relativo en .
  1. Si , entonces  tiene un mínimo relativo en .
  1. Si , entonces el criterio no decide. Esto es,  quizás tenga un máximo relativo en , un mínimo relativo en  o ninguno de los dos. En tales casos, se puede utilizar el criterio de la primera derivada o el criterio de la tercera derivada.

Resultado de imagen para Función primera derivada y segunda derivada.